Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Plant Physiol Biochem ; 204: 108127, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37890229

RESUMO

Enzymes of the sulfur assimilation pathway of plants have been identified as potential targets for herbicide development, given their crucial role in synthesizing amino acids, coenzymes, and various sulfated compounds. In this pathway, O-acetylserine (thiol) lyase (OAS-TL; EC 2.5.1.47) catalyzes the synthesis of L-cysteine through the incorporation of sulfate into O-acetylserine (OAS). This study used an in silico approach to select seven inhibitors for OAS-TL. The in silico experiments revealed that S-benzyl-L-cysteine (SBC) had a better docking score (-7.0 kcal mol-1) than the substrate OAS (-6.6 kcal mol-1), indicating its suitable interaction with the active site of the enzyme. In vitro experiments showed that SBC is a non-competitive inhibitor of OAS-TL from Arabidopsis thaliana expressed heterologously in Escherichia coli, with a Kic of 4.29 mM and a Kiu of 5.12 mM. When added to the nutrient solution, SBC inhibited the growth of maize and morning glory weed plants due to the reduction of L-cysteine synthesis. Remarkably, morning glory was more sensitive than maize. As proof of its mechanism of action, L-cysteine supplementation to the nutrient solution mitigated the inhibitory effect of SBC on the growth of morning glory. Taken together, our data suggest that reduced L-cysteine synthesis is the primary cause of growth inhibition in maize and morning glory plants exposed to SBC. Furthermore, our findings indicate that inhibiting OAS-TL could potentially be a novel approach for herbicidal action.


Assuntos
Arabidopsis , Herbicidas , Liases , Arabidopsis/metabolismo , Cisteína , Cisteína Sintase/metabolismo , Herbicidas/farmacologia , Plantas/metabolismo , Compostos de Sulfidrila/metabolismo
2.
J Biomol Struct Dyn ; : 1-8, 2023 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-37424215

RESUMO

The SARS-CoV-2 pandemic originated the urgency in developing therapeutic resources for the treatment of COVID-19. Despite the current availability of vaccines and some antivirals, the occurence of severe cases of the disease and the risk of the emergence of new virus variants still motivate research in this field. In this context, this study aimed at the computational prospection of likely inhibitors of the main protease (Mpro) of SARS-CoV-2 since inhibiting this enzyme leads to disruption of the viral replication process. The virtual screening of the antiviral libraries Asinex, ChemDiv, and Enamine targeting SARS-CoV-2 Mpro was performed, indicating the D449-0032 compound as a promising inhibitor. Molecular dynamics simulations showed the stability of the protein-ligand complex and in silico predictions of toxicity and pharmacokinetic parameters indicated the probable drug-like behavior of the compound. In vitro and in vivo studies are essential to confirm the Mpro inhibition by the D449-0032.Communicated by Ramaswamy H. Sarma.

3.
Biochimie ; 211: 87-95, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36934778

RESUMO

The enzyme Homoserine dehydrogenase from Paracoccidioides brasiliensis (PbHSD), an interesting enzyme in the search for new antifungal drugs against paracoccidioidomycosis, was expressed by E. coli. Thirty milligrams of PbHSD with 94% of purity were obtained per liter of culture medium. The analysis by CD spectroscopy indicates a composition of 45.5 ± 7.3% of α-helices and 10.5 ± 7.0% ß-strands. Gel filtration chromatography indicates a homodimer as biological unity. Fluorescence emission spectroscopy has shown stability of PbHSD in the presence of urea until Cm of 4.13 ± 0.21 M, and a broad pH range in which there is no conformational change. The protein analysis by differential scanning calorimetry indicates high stability at room temperature, but low stability at high temperatures, suffering irreversible denaturation, with Tm = 58.65 ± 0.87 °C. Kinetic studies of PbHSD by molecular absorption spectroscopy in UV/Vis have shown an optimum pH between 9.35 and 9.50, with Michaelian behavior, presenting KM of 224 ± 15 µM and specific activity at optimum pH of 2.10 ± 0.07 µmol/min/mg for homoserine. Therefore, protein expression and purification were efficient, and the structural characterization has shown that PbHSD presents native conformation with enzymatic activity in kinetic assays.


Assuntos
Paracoccidioides , Paracoccidioides/genética , Paracoccidioides/metabolismo , Homosserina Desidrogenase/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Cinética , Espectrometria de Fluorescência
4.
Food Funct ; 14(3): 1761-1772, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36723015

RESUMO

A variety of the classic green tea plant, Camellia sinensis, was developed and is exclusive to Kenya. Due to high content of anthocyanin polyphenols in its leaves, the beverage obtained from this variety is purple in color and is the origin of the name purple tea. This work had two main purposes. The first one was to identify and quantify the major anthocyanin polyphenols in a hot water aqueous extract of the purple tea leaves. The second one was to test the hypothesis if this extract is capable of inhibiting triglyceride absorption considering that anthocyanin polyphenolics have been frequently associated to antilipidemic effects. Parallel experiments were always done with a similar green tea extract for comparison purposes. The antioxidant, anti-inflammatory, and cytotoxic activities of both tea varieties are similar. The purple tea extract, however, was strongly inhibitory toward the pancreatic lipase (minimal IC50 = 67.4 µg mL-1), whereas the green tea preparation was a weak inhibitor. Triglyceride digestion in mice was inhibited by the purple tea extract starting at 100 mg kg-1 dose and with a well-defined dose dependence. Green tea had no effect on triglyceride digestion at doses up to 500 mg kg-1. The latter effect is probably caused by several components in the purple tea extract including non-anthocyanin and anthocyanin polyphenols, the first ones acting solely via the inhibition of the pancreatic lipase and the latter by inhibiting both the lipase and the transport of free fatty acids from the intestinal lumen into the circulating blood. The results suggest that the regular consumption of Kenyan purple tea can be useful in the control of obesity.


Assuntos
Camellia sinensis , Lipase , Camundongos , Animais , Quênia , Polifenóis/farmacologia , Polifenóis/análise , Chá/química , Camellia sinensis/química , Antocianinas/farmacologia , Antocianinas/química , Antioxidantes/análise , Triglicerídeos , Digestão
5.
J Biomol Struct Dyn ; 41(21): 12204-12213, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36651196

RESUMO

The deaths caused by the covid-19 pandemic have recently decreased due to a worldwide effort in vaccination campaigns. However, even vaccinated people can develop a severe form of the disease that requires ICU admission. As a result, the search for antiviral drugs to treat these severe cases has become a necessity. In this context, natural products are an interesting alternative to synthetic medicines used in drug repositioning, as they have been consumed for a long time through traditional medicine. Many natural compounds found in plant extracts have already been shown to be effective in treating viral and bacterial diseases, making them possible hits to exploit against covid-19. The objective of this work was to evaluate the antiviral activity of different plant extracts available in the library of natural products of the Universidade Estadual de Maringá, by inhibiting the SARS-CoV-2 main protease (Mpro), and by preventing viral infection in a cellular model. As a result, the extract of Cytinus hypocistis, obtained by ultrasound, showed a Mpro inhibition capacity greater than 90%. In the infection model assays using Vero cells, an inhibition of 99.6% was observed, with a selectivity index of 42.7. The in silico molecular docking simulations using the extract compounds against Mpro, suggested Tellimagrandin II as the component of C. hypocistis extract most likely to inhibit the viral enzyme. These results demonstrate the potential of C. hypocistis extract as a promising source of natural compounds with antiviral activity against covid-19.Communicated by Ramaswamy H. Sarma.


Assuntos
Produtos Biológicos , COVID-19 , Humanos , Chlorocebus aethiops , Animais , Simulação de Acoplamento Molecular , Pandemias , SARS-CoV-2 , Células Vero , Extratos Vegetais/farmacologia , Antivirais/farmacologia , Inibidores de Proteases/farmacologia , Simulação de Dinâmica Molecular
6.
J Biomol Struct Dyn ; 41(7): 2971-2980, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35196960

RESUMO

The development of new drugs against Mycobacterium tuberculosis is an essential strategy for fighting drug resistance. Although 3-dehydroquinate dehydratase (MtDHQ) is known to be a highly relevant target for M. tuberculosis, current research shows new putative inhibitors of MtDHQ selected by a large-scale ensemble-docking strategy combining ligand- and target-based chemoinformatic methods to deep learning. Initial chemical library was reduced from 216 million to approximately 460 thousand after pharmacophore, toxicity and molecular weight filters. Final library was subjected to an ensemble-docking protocol in GOLD which selected the top 300 molecules (GHITS). GHITS displayed different structures and characteristics when compared to known inhibitors (KINH). GHITS were further screened by post-docking analysis in AMMOS2 and deep learning virtual screening in DeepPurpose. DeepPurpose predicted that a number of GHITS had comparable or better affinity for the target than KINH. The best molecule was selected by consensus ranking using GOLD, AMMOS2 and DeepPurpose scores. Molecular dynamics revealed that the top hit displayed consistent and stable binding to MtDHQ, making strong interactions with active-site loop residues. Results forward new putative inhibitors of MtDHQ and reinforce the potential application of artificial intelligence methods for drug design. This work represents the first step in the validation of these molecules as inhibitors of MtDHQ.


Assuntos
Aprendizado Profundo , Mycobacterium tuberculosis , Ligantes , Inteligência Artificial
7.
J Biomol Struct Dyn ; 41(18): 8671-8681, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36255291

RESUMO

Piperine (PPN) is a known inhibitor of efflux pumps in Mycobacterium tuberculosis and in vitro synergism with rifampicin (RIF) has been proven. The current study evaluates the activity of PPN and synergism with RIF in rapidly and slowly growing nontuberculous mycobacteria (NTM). Also, to propose a possible mechanism of interaction of PPN with M. leprae (Mlp) RNA polymerase (RNAp). Minimal inhibitory concentration and drug combination assay was determined by resazurin microtiter assay and resazurin drug combination assay, respectively. In silico evaluation of PPN binding was performed by molecular docking and molecular dynamics (MD). PPN showed higher antimicrobial activity against rapidly growing NTM (32-128 mg/L) rather than for slowly growing NTM (≥ 256 mg/L). Further, 77.8% of NTM tested exhibited FICI ≤ 0.5 when exposed to PPN and RIF combination, regardless of growth speed. Docking and MD simulations showed a possible PPN binding site at the interface between ß and ß' subunits of RNAp, in close proximity to the trigger-helix and bridge-helix elements. MD results indicated that PPN binding hindered the mobility of these elements, which are essential for RNA transcription. We hypothesize that PPN binding might affect mycobacterial RNAp activity, and, possibly, RIF activity and that this mechanism is partially responsible for synergic behaviors with RIF reported in vitro. Communicated by Ramaswamy H. Sarma.

8.
J Biomol Struct Dyn ; 41(15): 7297-7308, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36069130

RESUMO

Few extracts of plant species from the Brazilian flora have been validated from a pharmacological and clinical point of view, and it is important to determine whether their traditional use is proven by pharmacological effects. Cenostigma pluviosum var. peltophoroides is one of those plants, which belongs to the Fabaceae family that is widely used in traditional medicine and is very rich in tannins. Due to the lack of effective drugs to treat severe cases of Covid-19, the main protease of SARS-CoV-2 (Mpro) becomes an attractive target in the research for new antivirals since this enzyme is crucial for virus replication and does not have homologs in humans. This study aimed to prospect inhibitor candidates among the compounds from C. pluviosum extract, by virtual screening simulations using SARS-CoV-2 Mpro as target. Experimental validation was made by inhibitory proteolytic assays of recombinant Mpro and by antiviral activity with infected Vero cells. Docking simulations identify four compounds with potential inhibitory activity of Mpro present in the extract. The compound pentagalloylglucose showed the best result in proteolytic kinetics experiments, with suppression of recombinant Mpro activity by approximately 60%. However, in experiments with infected cells ethyl acetate fraction and sub-fractions, F2 and F4 of C. pluviosum extract performed better than pentagalloylglucose, reaching close to 100% of antiviral activity. The prominent activity of the extract fractions in infected cells may be a result of a synergistic effect from the different hydrolyzable tannins present, performing simultaneous action on Mpro and other targets from SARS-CoV-2 and host.Communicated by Ramaswamy H. Sarma.

9.
Photochem Photobiol Sci ; 22(3): 669-686, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36417143

RESUMO

The mycelial biomass of basidiomycetes is a promising source of compounds and represents an alternative for industrial and biotechnological applications. Fungi use light as information and hold photoresponse mechanisms, in which sensors respond to light wavelengths and regulate various biological processes. Therefore, this study aimed to investigate the effects of blue, green, and red lights on the growth, chemical composition, and antioxidant and antimicrobial activity of Lentinus crinitus mycelial biomass. The chemical composition of the mycelial biomass was determined by chromatographic methods, antioxidant activity was analyzed by in vitro assays, and antimicrobial activity was investigated by the microdilution assay. The highest mycelial biomass yield was observed under blue-light cultivation. Many primordia arose under blue or green light, whereas the stroma was formed under red light. The presence of light altered the primary fungal metabolism, increasing the carbohydrate, tocopherol, fatty acid, and soluble sugar contents, mostly mannitol, and reducing the protein and organic acid concentrations. Cultivation under red light increased the phenol concentration. In contrast, cultivation under blue and green lights decreased phenol concentration. Benzoic and gallic acids were the main phenolic acids in the hydroalcoholic extracts, and the latter acids increased in all cultures under light, especially red light. Mycelial biomass cultivated under red light showed the highest antioxidant activity in the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. The ferric reducing antioxidant power (FRAP) method showed that all light wavelengths increased the antioxidant activity of mycelial biomass, with the highest value under red light. Moreover, the ß-carotene/linoleic acid co-oxidation (BCLA) assay demonstrated that the antioxidant activity was affected by light cultivation. Mycelial biomass grown under all conditions exhibited antibacterial and antifungal activities. Thus, mycelial biomass cultivation of L. crinitus under light conditions may be a promising strategy for controlling the mycelial chemical composition and biomass yield.


Assuntos
Anti-Infecciosos , Basidiomycota , Lentinula , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Biomassa , Lentinula/metabolismo , Basidiomycota/metabolismo , Fenóis/metabolismo
10.
J Ethnopharmacol ; 295: 115403, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35643209

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The leaves, bark, and roots of Gallesia integrifolia are consumed in folk medicine through infusion, decoction, and topical preparation by crushing because of its pharmacological properties in several peripheral system disorders, including microbial infections. The presence of various molecules in different parts of the plant likely confers this species' fungicidal action, but scientific evidence is lacking. Vulvovaginal candidiasis mainly affects women of reproductive age. When left untreated, it can cause pregnancy complications. Currently available antifungals often cause undesirable side effects. New alternative therapeutic strategies based on medicinal plants have been proposed. AIM: To investigate the antifungal activity of G. integrifolia against vulvovaginal candidiasis secretion in pregnant women. MATERIALS AND METHODS: Antifungal activity was determined by the minimum inhibitory concentration (MIC), determined by broth microdilution method using Candida spp (NEWP1210), C. albicans (CCCD-CC001), C. tropicalis (CCCD-CC002) standard and clinical isolates from pregnant women with vulvovaginal candidiasis. Nystatin and fluconazole were used as positive controls. The chemical composition of essential oils that were extracted from leaves, flowers, and fruits of G. integrifolia was determined by gas chromatography coupled to mass spectrometry. Reverse docking was used to suggest a possible target in Candida. Conventional docking was used to identify the most probable compound that inhibits fungal growth. RESULTS: A total of 24 compounds were identified, accounting for ∼99% of volatile constituents in the essential oils. Leaves of G. integrifolia contained 3,5-dithiahexanol-5,5-dioxide (40.93%), flowers contained methionine ethyl ester (46.78%), and fruits contained 2,8-dithianonane (54.01%) as the most abundant compounds. The MICs of essential oils of leaves, flowers, and fruits of G. integrifolia against standard strains of Candida spp, C. albicans, and C. tropicalis ranged from 13.01 to 625.00 µg/mL. The essential oil of flowers more effectively inhibited Candida spp. Essential oils of leaves and flowers were similar to fluconazole against C. albicans. Essential oils of flowers and fruits were similar to fluconazole against C. tropocalis. In Candida yeast species that were isolated from vaginal secretion samples from pregnant patients, the MICs of leaves and flowers ranged from 52.08 to 5000.00 µg/mL. The essential oil of leaves (277.77 µg/mL) was the most active against C. albicans. No significant differences were found between the essential oils of leaves and flowers against C. glabrata. Docking simulations suggested that phytol in leaves and flowers was responsible for the antimicrobial effect. CONCLUSION: The present results suggest the potential therapeutic use of G. integrifolia, especially its leaves and flowers, against Candida and vulvovaginal candidiasis.


Assuntos
Candidíase Vulvovaginal , Alho , Óleos Voláteis , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Candida , Candida albicans , Candida glabrata , Candida tropicalis , Candidíase Vulvovaginal/tratamento farmacológico , Candidíase Vulvovaginal/microbiologia , Feminino , Fluconazol/farmacologia , Humanos , Óleos Voláteis/farmacologia , Óleos Voláteis/uso terapêutico , Gravidez , Gestantes
11.
Antibiotics (Basel) ; 12(1)2022 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-36671247

RESUMO

Monteverdia ilicifolia is a Brazilian native plant, traditionally used to treat gastric diseases that are now associated with Helicobacter pylori and are commonly associated with several human diseases. We point out the M. ilicifolia extract as active against H. pylori. The crude extract produced with acetone:water presented the best H. pylori inhibitory activity of all five extracts (MIC 64 µg/mL). The ethyl-acetate fractions from crude extracts produced with ethanol and acetone showed a MIC of 64 µg/mL. Both ethyl-acetate fractions and the crude extract produced with acetone showed an antioxidant capacity of between 14.51 and 19.48 µg/mL in the DPPH assay. In the FRAP assay, two ethyl-acetate fractions (EAF2 and EAF4) presented the antioxidant capacity of 5.40 and 5.15 mM Trolox/g of extract. According to the results obtained from the antioxidant and antibacterial assays, two fractions (EAF2 and nBF5) were analyzed by mass spectrometry and confirmed the presence of monomeric, dimeric, trimeric tannins, and glycosylated flavonoids. Some compounds were tested using bioinformatics to evaluate the best enzyme inhibitors and the molecular interaction between the enzyme and the tested ligands. The presence of these polyphenol compounds could play an important role in antioxidant and inhibitory capacities against H. pylori and can be used to assist in the treatment or prevention of infection by H. pylori.

12.
Food Chem ; 367: 130728, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34380107

RESUMO

Fish protein hydrolysates (FPH) obtained from industrial processing residues are sources of bioactive peptides. The enzymatic hydrolysis process is essential in obtaining specific bioactivities such as inhibition of the enzyme acetylcholinesterase (AChE). In this study the effect of different hydrolysis conditions on the properties of FPH to inhibit the enzyme acetylcholinesterase. A chemometric evaluation, based on a central composite rotatable design and principal component analysis, was applied to select hydrolysis conditions with best yield, degree of hydrolysis and acetylcholinesterase inhibition. Experimental design results for AChE inhibition were between 10.51 and 40.45% (20, 30 and 50 mg.mL-1 of FPH), and three hydrolysis conditions were selected based on PCA evaluation. The amino acids profile, FTIR and AChE inhibition kinetics were evaluated. Results showed a mixed type of inhibition behavior and, the docking molecular analyzes suggest that the inhibition AChE occurred due to the basic amino acids, mainly by arginine.


Assuntos
Acetilcolinesterase , Hidrolisados de Proteína , Animais , Peixes , Hidrólise , Peptídeos
13.
Food Res Int ; 150(Pt A): 110781, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34865796

RESUMO

In order to contribute to improve knowledge about the actions of Camellia sinensis extracts on starch digestion, several varieties were compared. The latter were green, oolong, white, black, and purple teas. The results are hoped to contribute to our understanding of the mode of action and potency of the various tea preparations as possible adjuvants in the control of post-prandial glycemia. The extracts were prepared in way similar to their form of consumption. All extracts decreased starch digestion, but the purple tea extract was the strongest inhibitor, their inhibitory tendency started at the dose of 50 mg/kg and was already maximal with 250 mg/kg. Maltose tolerance was not significantly affected by the extracts. Glucose tolerance was not affected by purple tea, but black tea clearly diminished it; green tea presented the same tendency. Purple tea was also the strongest inhibitor of pancreatic α-amylase, followed by black tea. The green tea, oolong tea, and white tea extracts tended to stimulate the pancreatic α-amylase at low concentrations, a phenomenon that could be counterbalancing its inhibitory effect on starch digestion. Based on chemical analyses and molecular docking simulations it was concluded that for both purple and black tea extracts the most abundant active component, epigallocatechin gallate, seems also to be the main responsible for the inhibition of the pancreatic α-amylase and starch digestion. In the case of purple tea, the inhibitory activity is likely to be complemented by its content in deoxyhexoside-hexoside-containing polyphenolics, especially the kaempferol and myricetin derivatives. Polysaccharides are also contributing to some extent. Cyanidins, the compounds giving to purple tea its characteristic color, seem not to be the main responsible for its effects on starch digestion. It can be concluded that in terms of postprandial anti-hyperglycemic action purple tea presents the best perspectives among all the tea varieties tested in the present study.


Assuntos
Camellia sinensis , Digestão , Simulação de Acoplamento Molecular , Extratos Vegetais/farmacologia , Amido , Chá
14.
Curr Issues Mol Biol ; 43(2): 767-781, 2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34449532

RESUMO

KIN (Kin17) protein is overexpressed in a number of cancerous cell lines, and is therefore considered a possible cancer biomarker. It is a well-conserved protein across eukaryotes and is ubiquitously expressed in all cell types studied, suggesting an important role in the maintenance of basic cellular function which is yet to be well determined. Early studies on KIN suggested that this nuclear protein plays a role in cellular mechanisms such as DNA replication and/or repair; however, its association with chromatin depends on its methylation state. In order to provide a better understanding of the cellular role of this protein, we investigated its interactome by proximity-dependent biotin identification coupled to mass spectrometry (BioID-MS), used for identification of protein-protein interactions. Our analyses detected interaction with a novel set of proteins and reinforced previous observations linking KIN to factors involved in RNA processing, notably pre-mRNA splicing and ribosome biogenesis. However, little evidence supports that this protein is directly coupled to DNA replication and/or repair processes, as previously suggested. Furthermore, a novel interaction was observed with PRMT7 (protein arginine methyltransferase 7) and we demonstrated that KIN is modified by this enzyme. This interactome analysis indicates that KIN is associated with several cell metabolism functions, and shows for the first time an association with ribosome biogenesis, suggesting that KIN is likely a moonlight protein.


Assuntos
Cromatina/metabolismo , Proteínas de Ligação a DNA/metabolismo , Neoplasias/metabolismo , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribossomos/metabolismo , Células Cultivadas , Humanos , Neoplasias/genética , Neoplasias/patologia , Proteínas Nucleares/metabolismo , Mapas de Interação de Proteínas , Splicing de RNA
15.
Biomol NMR Assign ; 15(2): 449-453, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34417717

RESUMO

KIN is a DNA/RNA-binding protein conserved evolutionarily from yeast to humans and expressed ubiquitously in mammals. It is an essential nuclear protein involved in numerous cellular processes, such as DNA replication, class-switch recombination, cell cycle regulation, and response to UV or ionizing radiation-induced DNA damage. The C-terminal region of the human KIN (hKIN) protein is composed of an SH3-like tandem domain, which is crucial for the anti-proliferation effect of the full-length protein. Herein, we present the 1H, 15N, and 13C resonances assignment of the backbone and side chains for the SH3-like tandem domain of the hKIN protein, as well as the secondary structure prediction based on the assigned chemical shifts using TALOS-N software. This work prepares the ground for future studies of RNA-binding and backbone dynamics.


Assuntos
Domínios de Homologia de src
16.
Theriogenology ; 166: 64-70, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33689929

RESUMO

Pregnancy rates using frozen semen from rams are higher than for horses. One of the factors that positively influences this effect is the composition of low-molecular-weight proteins from seminal plasma, since the amounts of these proteins are much lower in horses. The aim of this work was to purify the major protein components from ram seminal plasma for structural and biophysical characterization. First, the ram semen was collected and the plasma separated by centrifugation. The protein fractions were isolated by gel filtration chromatography, analyzed by circular dichroism spectroscopy and the amino acid sequence identified by mass spectrometry (LC-MSE), the results of which were used to model the protein structure by bioinformatics techniques. This protein was identified by LC-MSE as a spermadhesin, being an unglycosylated monomer with Tm = 69.3 °C and ΔHm= 371 kJ mol-1 at pH 7.0. This work describes for the first time the structural characterization of a spermadhesin from seminal plasma of Dorper rams.


Assuntos
Preservação do Sêmen , Sêmen , Sequência de Aminoácidos , Animais , Feminino , Masculino , Gravidez , Proteínas , Preservação do Sêmen/veterinária , Proteínas de Plasma Seminal , Ovinos , Carneiro Doméstico
17.
Food Res Int ; 137: 109462, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33233136

RESUMO

A practical approach to control glycemia in diabetes is to use plant natural products that delay hydrolysis of complex sugars and promote the diminution of the release of glucosyl units into the blood plasma. Polyphenolics have been described as being effective in inhibiting amylases and α-glucosidases. Grape pomace is an important sub product of the wine industry, still rich in many compounds such as polyphenolics. In this context, the purpose of this study was to search for possible effects of a grape pomace extract on salivary and pancreatic α-amylases and α-glucosidase, as well as on intestinal glucose absorption. The Merlot grape pomace extract (MGPE) was prepared using a hydroalcoholic mixture (40% ethanol + 60% water). In vitro inhibition was quantified using potato starch (for amylases) and maltose (for α-glucosidase) as substrates. In vivo inhibition was evaluated by running starch and maltose tolerance tests in rats with or without administration of MGPE. Ranking of the extract compounds for its affinity to the α-amylases was accomplished by computer simulations using three different programs. Both α-amylases, pancreatic and salivary, were inhibited by the MGPE. No inhibition on α-glucosidase, however, was detected. The IC50 values were 90 ± 10 µg/mL and 143 ± 15 µg/mL for salivary and pancreatic amylases, respectively. Kinetically this inhibition showed a complex pattern, with multiple binding of the extract constituents to the enzymes. Furthermore, the in silico docking simulations indicated that several phenolic substances, e.g., peonidin-3-O-acetylglucoside, quercetin-3-O-glucuronide and isorhamnetin-3-O-glucoside, besides catechin, were the most likely polyphenols responsible for the α-amylase inhibition caused by MGPE. The hyperglycemic burst, an usual phenomenon that follows starch administration, was substantially inhibited by the MGPE. Our results suggest that the MGPE can be adequate for maintaining normal blood levels after food ingestion.


Assuntos
Diabetes Mellitus , Vitis , Animais , Simulação por Computador , Inibidores de Glicosídeo Hidrolases/farmacologia , Extratos Vegetais/farmacologia , Ratos , alfa-Amilases , alfa-Glucosidases
18.
Appl Biochem Biotechnol ; 192(1): 257-282, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32378080

RESUMO

A new cellulase producer strain of Penicillium digitatum (RV 06) was previously obtained from rotten maize grains. This work aim was to optimize the production and characterize this microorganism produced cellulase. A CMCase maximum production (1.6 U/mL) was obtained in stationary liquid culture, with an initial pH of 5.0, at 25 °C, with 1% lactose as carbon source, and cultured for 5 days. The produced enzyme was purified by ammonium sulfate precipitation and exclusion chromatography. The purified enzyme optimal temperature and pH were 60 °C and 5.2, respectively. The experimental Tm of thermal inactivation was 63.68 °C, and full activity was recovered after incubation of 7 h at 50 °C. The purified 74 kDa CMCase presented KM for CMC of 11.2 mg/mL, Vmax of 0.13 µmol/min, kcat of 52 s-1, and kcat/KM of 4.7 (mg/mL)-1 s-1. The purified enzyme had a high specificity for CMC and p-nitrophenyl cellobioside and released glucose and cellobiose as final products of the CMC hydrolysis. The enzyme trypsin digestion produced peptides whose masses were obtained by MALDI-TOF/TOF mass spectrometry, which was also used to obtain two peptide sequences. These peptide sequences and the mass peak profile retrieved a CBHI within the annotated genome of P. digitatum PD1. Sequence alignments and phylogenetic analysis confirmed this enzyme as a CBHI of the glycoside hydrolase family 7. The P. digitatum PD1 protein in silico structural model revealed a coil and ß-conformation predominance, which was confirmed by circular dichroism of the P. digitatum RV 06 purified enzyme.


Assuntos
Celobiose/metabolismo , Celulase/biossíntese , Celulose 1,4-beta-Celobiosidase/biossíntese , Celulose 1,4-beta-Celobiosidase/isolamento & purificação , Proteínas Fúngicas/biossíntese , Penicillium/enzimologia , Dicroísmo Circular , Estabilidade Enzimática , Genoma Fúngico , Glucose/metabolismo , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Filogenia , Sensibilidade e Especificidade , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Especificidade por Substrato , Temperatura
19.
Plant Physiol Biochem ; 151: 421-428, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32289635

RESUMO

Caffeate 3-O-methyltransferase (COMT) catalyzes the methylation of the 3-hydroxyl group of caffeate to produce ferulate, an important precursor of the lignin biosynthesis. As a crucial drawback for biofuel production, lignin limits the enzymatic hydrolysis of polysaccharides to result in fermentable sugars. We hypothesized that a controlled inhibition of maize COMT can be an efficient approach to reduce ferulate and lignin, thus improving the saccharification process. First, we applied in silico techniques to prospect potential inhibitors of ZmaysCOMT, and the nitrocatechol entacapone was selected. Second, in vitro assays confirmed the inhibitory effect of entacapone on maize COMT. Finally, in vivo experiments revealed that entacapone reduced the contents of cell-wall-esterified hydroxycinnamates and increased saccharification of stems (18%) and leaves (70%), without negatively affecting maize growth and lignin biosynthesis. This non-genetically modified approach can be an alternative strategy to facilitate the enzymatic hydrolysis of biomass polysaccharides and increase saccharification for bioethanol production.


Assuntos
Catecóis , Lignina , Nitrilas , Polissacarídeos , Zea mays , Biocombustíveis , Biomassa , Inibidores de Catecol O-Metiltransferase/farmacologia , Catecóis/farmacologia , Parede Celular/efeitos dos fármacos , Nitrilas/farmacologia , Plantas Geneticamente Modificadas , Polissacarídeos/metabolismo , Zea mays/efeitos dos fármacos
20.
J Appl Biomed ; 18(4): 106-114, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-34907763

RESUMO

Carvacrol presents action in Salmonella Typhimurium biofilms, however the antibiofilm mechanism of this compound has not been fully established yet. In the present study, the aim was to evaluate protein profile changes in S. Typhimurium biofilm treated with carvacrol. Proteomic analysis of treated versus untreated biofilm showed several changes in proteins involved with S. Typhimurium biofilm and antioxidant activity. The proteins DsbA (thiol: disulfide interchange protein DsbA), LuxS (S-ribosylhomocysteine lyase), DksA (RNA polymerase binding transcription factor DksA), and SODs (superoxide dismutases) A, B and C had their synthesis decreased after treatment with carvacrol. These proteins play a key role in S. Typhimurium biofilm formation, demonstrating the dynamic antibiofilm action of carvacrol. The differentially expressed proteins identified provide possible action targets for future studies in order to gain more insight into the mechanism of action of carvacrol on S. Typhimurium biofilm.


Assuntos
Proteômica , Salmonella typhimurium , Biofilmes , Cimenos/farmacologia , Salmonella typhimurium/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA